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SUMMARY

Ecological indicators are widely used to assess vegetation attributes and can be quantified through field-based and/or remote sensing
data. Particularly, advances in remote sensing have allowed monitoring of dry forest attributes across multiple spatiotemporal scales.
The objectives were to analyze the recent state-of-the-art in using remote sensing data as ecological indicators to assess dry forest
attributes; identify the data source of remote sensing indicators used; and identify the geographical distribution of these studies. A
systematic search was conducted for original research articles that used remote sensing data as ecological indicators of dry forests
attributes. Composition indicators were assessed with the same frequency at species/population and landscape/region hierarchy
levels. However, structural indicators were mainly assessed at the species/population level, and function indicators at the community/
ecosystem level. Over 60 % of the articles considered one ecological indicator, 20.45 % two, and 18.18 % used three indicators. Over
47 % considered field surveys and remote sensing data to assess dry forest attributes, and more than 52 % only had remote sensing
data. Four out of the 88 articles analyzed report a weak relationship between field surveys and remote sensing data. Landsat and
MODIS products were the most frequently used, with South America being the most studied continent. Observations and products
from a single sensor, as well as using only one ecological indicator or one hierarchy level, would not be enough to represent the
complexity of dry forest ecosystems.
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RESUMEN

Los indicadores ecoldgicos son ampliamente usados para evaluar los atributos de la vegetacion y pueden cuantificarse mediante
datos de campo y/o de teledeteccion. Particularmente, los avances en la teledeteccion han permitido monitorear las condiciones del
bosque seco a través de multiples escalas espacio-temporales. Los objetivos fueron analizar los ultimos avances en el uso de datos
obtenidos de sensores remotos como indicadores ecologicos para evaluar los atributos de los bosques secos; identificar la fuente de
datos de los indicadores de teledeteccion utilizados; e identificar la distribucion geografica de estos estudios. Se realizo una busqueda
sistematica de articulos de investigacion originales que utilizaron datos de sensores remotos como indicadores ecoldgicos de los
atributos de los bosques secos. La mayoria de los 78 articulos seleccionados utilizaron indicadores de composicion a nivel de paisaje/
region, indicadores de estructura a nivel de poblacion/especie e indicadores de funcion con frecuencia similar en ambos niveles. Mas
del 40 % considerd dos de los tres indicadores ecologicos. Mas del 50 % solo usé datos de sensores remotos como indicadores de
composicion y mas del 90 % como indicadores de funcion; sin embargo, casi el 70 % considero solo datos de estudios de campo como
indicadores de estructura. Los productos Landsat y MODIS fueron los mas utilizados, siendo Sudamérica el continente mas estudiado.
Las observaciones y productos de un solo sensor, asi como el uso de un solo indicador ecoldgico o un nivel jerarquico, pueden no ser
suficientes para representar la complejidad de los ecosistemas de bosques secos.

Palabras clave: indicadores ecologicos, sensores remotos; ecosistemas de tierras secas, composicion, estructura y funcion.

INTRODUCTION to regional warming and the expansion of urban centers
(Bastin et al. 2017). In drylands, woody species play a

Currently, drylands stretch across more than 40 % of  fundamental role in climate change by acting as sinks and
the Earth’s land surface, but recent climate model simu-  sources of carbon, providing habitats for many animals
lations predict that they could extend for over 50 % due and plants species, and supplying other vital ecosystem
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services such as regulation of hydrobiological cycle, pro-
tection from erosion, and supply of food and raw materials
(Thompson 2011, Hansen ef al. 2013). Moreover, woody
species establish fertility islands that increase the system’s
total biodiversity (Villagra 2000, Rossi and Villagra 2003,
Cesca et al. 2012, Campos et al. 2017). Despite the crucial
role of woody species in dry forests, there are important
gaps in basic knowledge of their patterns and processes.
Spatiotemporal changes in dryland vegetation patterns
represent a consistent indicator of a catastrophic shift from
a vegetated to a degraded non-vegetated state (Veldhuis et
al. 2022). However, knowledge of dry forests is relatively
limited because of their being structurally and functionally
very dynamic, so carrying out continuous field measure-
ments of these ecosystems is a great challenge (Smith et
al. 2019). Moreover, it is important to consider that pat-
terns and processes operate on a wide range of spatial and
temporal scales, and there may be no single correct scale
(Levin 1992). For this, it is crucial to understand how infor-
mation is transferred from fine to broad-scale, i.e. from the
leaf to the ecosystem to the landscape and beyond (Levin
1992). Therefore, an exhaustive analysis of vegetation con-
ditions should consider aspects of structural components
and ecological processes into account, at several hierarchy
levels and consider different scales in time and space (Noss
1990). However, such a comprehensive assessment would
be impossible and impractical because it is time-consu-
ming, and often too expensive (Lawley ez al. 2015). In con-
sequence, ecologists proposed the use of a subgroup of in-
dicators to know current dry forest conditions (Noss 1990,
Dale and Beyeler 2001). The correct choice of indicators
to assess ecological attributes of an ecosystem should con-
sider specific objectives, the scale of interest, logistic and
funding resources, and management implications (Dale and
Beyeler 2001). Moreover, the selected indicators should
be ecologically relevant, reliable, and repeatable to allow
comparison and monitoring, be sensitive to stressor factors,
be able to change with management practices, and allow
for continuous and standardized assessment (Noss 1990).
Considering the multiple facets of an ecosystem, the-
re are diverse ecological indicators according to its three
attributes: composition (identity and variety of elements),
structure (three-dimensional arrangement or physical or-
ganization), and functional attributes (ecological processes
and history) (Noss 1990). Combined, these attributes defi-
ne the wholeness and complexity of an ecological system,
therefore, their presence, absence, or variations reflect
changes at one or various hierarchy levels, and possibly at
different spatiotemporal scales (Dale and Beyeler 2001).
The indicators of these attributes can be obtained from
field-based measurements and/or from remote sensing
data. The first method has focused mainly on taxonomy,
sometimes on other compositional and structural attribu-
tes, and rarely relates to the extent of the system’s functio-
nality (Lawley ef al. 2015). Even though this method pro-
vides indispensable information, it could be ineffective to
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obtain vegetation covers across broad spatial extents due to
its high cost and time-consuming requirements (Xie et al.
2008). Remote sensing data afford systematic, spatial, and
temporal data on land surface (Nagendra 2001, Lawley ef
al. 2015), and is therefore considered the most promising
approach to studying an ecological system in its wholeness
(Hall et al. 2006, Smith et al. 2019). Moreover, it is being
increasingly recognized for its applicability in assessing
vegetation conditions (Campos et al. 2018, Campos ef al.
2022), and in mapping land use/land cover change; mo-
reover, as a proxy of biodiversity at different spatial scales
(Bradley ef al. 2012, Irisarri et al. 2012). A right selection
of the remote sensing data resolution (i.e. spatial, spec-
tral, temporal) is defined by the vegetation attributes that
researchers want to accurately measure (i.e. temperature
of leaves, phenology, canopy structure and cover, patch
distribution, and configuration) (Lawley ef al. 2015). The-
refore, researchers should have a prior knowledge of the
vegetation characteristics to be measured in order to select
the appropriate imagery and study methods.

Notwithstanding, both detection and monitoring of dry
forest dynamics with remote sensing data are shaped by
particular challenges, such as a great effect of soil, senes-
cent or inactive vegetation, sparse and high spatial hetero-
geneity of vegetation canopies, unpredictable rainfall, and
frequent periods of drought (Bastin et al. 2017). Remote
sensing data developed and applied in other forests do not
usually have a good enough fit and accuracy to assess and
estimate dry forest attributes (Smith ez al. 2019). Particu-
larly, challenges are related to the estimation of tree abun-
dance, structure and distribution, biomass, productivity,
and phenology. Therefore, the ecological indicators used
for their evaluation should be specifically tailored to their
characteristics, since the dynamics and processes of dry
forests differ from other types of forests. In this context,
we conducted a systematic search for articles to determine
trends in the use of remote sensing data as ecological indi-
cators of dry forests and identify key knowledge gaps that
need to be addressed. The objectives of this systematic re-
view are: 1) to evaluate the recent state-of-the-art in using
remote sensing data as ecological indicators to assess dry
forest attributes; 2) to identify the data source of remote
sensing indicators used; and 3) to identify the geographical
distribution of studies that use remote sensing data as eco-
logical indicators to assess dry forest attributes.

METHODS

For this systematic review, we used the guidelines of
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (Liberati et al.
2009). A systematic search was conducted for original re-
search articles dealing with the use of remote sensing data
as ecological indicators of vegetation attributes in dry fo-
rests. Figure 1 summarizes the methodology and the steps
followed for article selection.



The systematic review included research articles from
the years 2000 to 2022, on four online bibliographic da-
tabases: 1- Google Scholar, 2- ResearchGate, 3- Scien-
ceDirect, and 4-Taylor & Francis. The following search
terms and Boolean operators were used in the search for
research articles: (i) ecological indicator AND dry forest
OR dry woodland; (ii) remote sensing AND dry forest OR
dry woodland.
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At the screening step, we applied the first filter to
remove studies of ecological indicators in other ecosys-
tems, studies covering other dry forest topics, duplicates,
reviews, theses, book chapters, and conference abstracts
(figure 1). At the eligibility step, we applied a second filter
through a systematic manual checking of titles and abs-
tracts. In order to select only original research articles re-
levant to the topic, we considered the following eligibility
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A4

[ Bibliographic databases ]

[ Google Scholar] [ ResearchGate ] [ Science direct ] [ Taylor & Francis ]

2782 results
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selection by manual checking
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- studies of ecological indicators in other ecosystems

- studies that include other topics of dry forests

- duplicates

- theses, chapters book, conference abstracts, reviews

475 articles
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Second filter: included studies that

- consider remote sensing data to evaluate attributes of
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- evaluate dry forest of dryland, not seasonal dry forest

88 articles
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/Meta-Data: author, year of publication, title, journal \
Geographical context: country, city, geographical units of spatial analysis
Data: type of data (i.e. remote sensing data and field survey, only remote sensing data)
Attributes of dry forest: type of ecological indicators (i.e. structure, composition, function)
Source of remote sensing data: satellite/instrument

\Effectiveness of ecological indicators: to describe the integrity of dry forest

J

Figure 1. Scheme of steps followed in the systematic search for articles.

Esquema de los pasos que se siguieron en la biisqueda sistematica de articulos.
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criteria: (1) articles that consider remote sensing data as
ecological indicators to evaluate dry forest attributes, (2)
those that evaluate dry forests of dryland biomes (annual
precipitations lower than 1,000 mm), not seasonally dry
tropical or subtropical forests (figure 1).

For each selected publication, we manually extrac-
ted information, i.e. publication meta-data, geographical
context, and specific context of research: type of data,
type of ecological indicators (i.e. composition, structure,
function), data source, effectiveness of ecological indica-
tors (to assess ecosystem condition and integrity), moni-
toring of ecosystem changes (focusing on structure and
functionality of trees) (table 1). We classified the ecolo-
gical indicators used in each research article according to
the three ecosystem attributes (i.e. composition, structure,
function) originally proposed by Noss (1990) and adap-
ted by Dale and Beyeler (2001), considering three study
levels (i.e. species/population, community/ecosystem,
landscape/region; table 2 and 3). As composition indica-
tors, we included variables related to presence of tree spe-
cies, abundance and diversity. As structure indicators, we
considered variables related to morphological features of
tree species and physical features of forest ecosystems. As
function indicators, we included variables that directly or
indirectly measure ecosystem processes and functions.

RESULTS

The systematic review returned 2,782 records from the
four online bibliographic databases, and as a result of the
evaluation process, 88 articles met our selection criteria
and were included for analysis. The information extracted
from each article is in SupplMatl (i.e. meta-data, geogra-

phical context, and specific context of research), Suppl-
Mat2 (data, dry forest attributes), and SupplMat3 (source
of remote sensing data, effectiveness of ecological indica-
tors, monitoring of ecosystem changes).

The ecological indicators assessed in these research
articles are described in table 2, 3 and 4, and were classi-
fied at all three hierarchy levels: (1) species/population, (2)

Table 2. The composition indicators considered in research articles
were classified at the three hierarchy levels. Below each level is the
percentage of articles that considered that level for each indicator.

Los indicadores de composicion considerados en los articulos
de investigacion se clasificaron siguiendo los tres niveles de jerarquia.
Debajo de cada nivel se encuentra el porcentaje de articulos que consid-
eraron ese nivel para cada indicador.

Level hierarchy Composition

Species identity

Species occurrence

Species density
Species / population Above Ground Biomass (AGB)

42.50 % Tree volume / wood density

Relative abundance
Status / health

Cover of vegetation

Community / ecosystem
15.00 %

Landscape / region
42.50 %

Diversity (richness, evenness)

Patch types (land cover classes)

Table 1. A. Organization of the data extracted from each article about meta-data and geographical context. B. Organization of the data

extracted from each article about type of data, dry forest attributes,
data for the whole dataset (n = 88) is in SupplMatl, 2 and 3.

and data source. For A and B the ID 001 is an example. The extracted

A. Organizacion de los datos extraidos de cada articulo acerca de metadatos y contexto geografico. B. Organizacion de los datos extraidos de
cada articulo acerca del tipo de datos, atributos del bosque seco y fuente de datos. Para Ay B, el ID 001 es un ejemplo. Los datos extraidos para todo
el conjunto de datos (n = 88) se encuentran en los Materiales Suplementarios 1,2 y 3.

A
Publication meta-data Geographical context
1D Author Date Title Journal Continent Geographical unit
Structural and Functional Central Argentine
001  Benedictto 2019  characterization of the dry forest Madera y Bosques South America Chaco &
in Central Argentine Chaco
B
Type of data Attributes of dry forest Effectiveness of ecological
ID — — Data source . .
RS+FS RS Composition Structure Functioning indicators
species richness, higher ANPP values with
001 X relative abundance, = DBH EVI MODIS higher density and basal area
evenness, density of trees
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community/ecosystem, (3) landscape/region. Concerning
composition indicators, the hierarchy levels of species/po-
pulation and landscape/region showed the same percentage
(42.50 %), followed by ecosystem/community (15.00 %)
(table 2). Related to structure indicators, the highest percen-
tages were for species/population (63.41 %) and communi-
ty/ecosystem (34.15 %) (table 3). For function indicators,
the most studied hierarchy level was community/ecosys-
tem (59.76 %), followed by landscape/region (40.24 %),
without records at the species/population level (table 4).

In all, 61.36 % of the articles assessed only one of the
three ecological attributes. The attributes of function were
the most frequently evaluated (42.05 %), followed by
structure (14.77 %) and composition (4.55 %) (figure 2).
Another 20.45 % assessed two of the three ecological
attributes, i.e. 9.09 % for structure-function, 6.82 % for
composition-function, 4.55 % for composition-structure;
and 18.18 % of the articles considered all three ecological
attributes (composition-structure-function) (figure 2).

Out of the 88 articles assessed, 47.73 % used remo-
te sensing and field survey data, and 52.27 % used only
remote sensing data. When composition attributes were
assessed, 31 out of 58 articles (53 %) considered remote
sensing data (figure 3); while most of the 38 articles asses-
sing structure attributes used field surveys (n = 25, 66 %)
(figure 3). Regarding function attributes, 62 of 65 articles
(95 %) considered remote sensing data (figure 3).

Different data sources were used in the dry forest stu-
dies selected, 91.77 % were remote sensing data from pas-
sive sensors and only 8.23 % were from active sensors.
Considering remote sensing data from passive sensors,
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Landsat and Moderate Resolution Imaging Spectroradio-
meter (MODIS) were the most used (38.62 % and 17.24 %
respectively), followed by Digital Elevation Model (DEM)
and Google Earth (figure 4). In relation to remote sensing

4.55%

C-F
6.82%

C-S
4.55%

F
42.05%

Figure 2. Percentage of articles that assess dry forest conditions
based on three, two and one ecological attributes. C: composi-
tion, S: structure, F: function.

Porcentaje de articulos que evaltan las condiciones del
bosque seco en base a tres, dos y un atributo ecologico. C: composicion,
S: estructura, F: funcion.

Table 3. The structure indicators considered in research articles were classified at the three hierarchy levels. Below each level is the

percentage of articles that considered that level for each indicator.

Los indicadores de estructura considerados en los articulos de investigacion se clasificaron siguiendo los tres niveles de jerarquia. Debajo de
cada nivel se encuentra el porcentaje de articulos que consideraron ese nivel para cada indicador.

Level hierarchy Structure

Diameter at Breast Height (DBH)

Tree height

Species / population Density and cover of adult trees

63.41 %
Density of juveniles, seedlings
Stand Basal Area (SBA)
Canopy cover/canopy bulk density
Height of stumps

) Slope
Community / ecosystem
34.15% Aspect

Soil (soil type, edaphic properties, wetness)

Elevation

Landscape / region
2.44 %

Landscape metrics: patch composition (type, size, shape) and patch configuration (distance, distribution)
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Table 4. The function indicators considered in research articles were classified at the three hierarchy levels. However, we did not have
records at the species/population level. Below each level is the percentage of articles that considered that level.

Los indicadores de funcion considerados en los articulos de investigacion se clasificaron siguiendo los tres niveles de jerarquia. Sin embargo,
no contamos con registros a nivel de especie/poblacion. Debajo de cada nivel se encuentra el porcentaje de articulos que consideraron ese nivel.

Level hierarchy Function

Leaf Area Index (LAI)

Plant area index (PAI)

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
Evapotranspiration (ET)

Bands: blue, red, Near Infrared (NIR), mid-Infrared (mid-IR)
Normalized Difference Vegetation Index (NDVI)
Enhanced Vegetation Index (EVI)

Soil Adjusted Vegetation Index (SAVI)

Soil Adjusted Total Vegetation Index (SATVI)
Green Vegetation (GV)

Fractional Vegetation Cover (FCOVER)
Non-Photosynthetic Vegetation (NPV)

Difference Vegetation Index (DVI)

Ratio Vegetation Index (RVT)

Wide Dynamic Range Vegetation Index (WDRVI)
Ring-Width Indices (RWI)

Aboveground Net Primary Productivity (ANPP)
Net Primary Productivity (NPP)

Tasseled Cap Transformation (TCT)

Polarization HH, VV, VH

Texture measures (occurrence, co-occurrence)

Community / ecosystem
59.76 %

Anthropogenic disturbances: agriculture, road, human settlements, kiln density, overgrazing, wood
extraction/residue, sawing pit.
Disturbance Index

Shortwave radiation (S)
Albedo
Solar Radiation Index (SRI)
Normalized Burn Ratio (NBR)
Surface Temperature (ST)
Solar radiation (SR)
Heat Flux (H)
Latent Heat Flux (LE)

Landscape / region Available Energy (NR-G)

40.24 % Watercourse
Water Index (WI)
Normalized Difference Water Index (NDWI)
Water vapor air concentrations
Normalized Difference Moisture Index (NDMI)
Topographic Wetness Index(TWI)
Moisture Index (MI)
Soil moisture Index (SWI)
Soil productivity Index
Drought Index (DI)
Groundwater Level (GWL)
Groundwater Depth (GWD)
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RS+ FS
composition RS

FS

RS+ FS

structure RS

FS 25

RS+ FS 3
function RS 62

FS |0

0 10 20 30 40 50 60 70

Figure 3. Number of articles that considered only remote sensing data (RS), only field survey (FS), or remote sensing and field survey
data (RS + FS) for each type of ecological indicator (i.e. composition, structure and function).

El nimero de articulos que consideraron solo datos de sensores remotos (RS), solo estudios de campo (FS) o datos de sensores remotos y
estudios de campo (RS + FS) para cada tipo de indicador ecologico (es decir, composicion, estructura y funcion).

80 —

Number of articles
1

Source of remote sensing data

Figure 4. Number of articles that used different sources of remote sensing data. The dark gray bars correspond to passive remote
sensors, while the light gray bars correspond to active remote sensors.

Numero de articulos que utilizaron diferentes fuentes de datos de teledeteccion. Las barras en gris oscuro corresponden a sensores remotos
pasivos, mientras que las barras en gris claro corresponden a sensores remotos activos.
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data from active sensors, ALOS Phased Array type L-band
Synthetic Aperture Radar (ALOS PALSAR) and Sentinel 1
were used with the same frequency (23.08 %), followed by
Light Detection and Ranging (LiDAR) (15.38 %, figure 4).
The characteristics of different satellites (i.e. data source,
spatial and temporal resolution, sensor: passive/active, ac-
cess) are described in table 5. For out of the 88 articles
analyzed, 4 report a weak relationship between field sur-
veys and remote sensing data or consider that other less
expensive methods are more efficient to assess anthropic
disturbance in forests (SupplMat3).

Regarding the geographical distribution of research
worldwide, the dry forests of South America were the most
studied (46.67 % of articles), followed by Africa (26.67 %),
and North America (14.44 %). Dry forests of Asia (6.67 %),
Europe (2.22%), and Oceania (3.33 %) were the least stu-
died (figure 5).

DISCUSSION

Our systematic review showed that most of the 88 arti-
cles selected used ecological indicators at species/popula-
tion and landscape/region hierarchy levels when composi-
tional attributes were assessed, and mainly at the species/
population hierarchy level when structural attributes were
assessed. Functional attributes were mainly evaluated at
the community/ecosystem hierarchy level, followed by the
landscape/region level. More than 60 % of the articles con-
sidered one of the three ecological attributes, 20.45 % as-
sessed two, and more than 18 % three ecological attributes.
When considering type of data (i.e. remote sensing data,
field survey, or both), over 50 % only used remote sensing
data when assessing compositional attributes, and 66 %

Africa
26.67 %

South America

46.67 %
Europe

2.22 %
Asia
6.67 %

Oceania " Yy
3.33%

North America
14.44 %

Figure 5. Continents studied in the 88 articles included.

Continentes estudiados en los 88 articulos evaluados.
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considered only field survey data when assessing structu-
ral attributes. Regarding functional attributes, 95 % used
only remote sensing data. More than 90 % of researchers
use data from passive remote sensing to evaluate dry forest
conditions, with Landsat and MODIS being the most fre-
quently used. Only four articles report a weak relationship
between field surveys and remote sensing data or consi-
der another method with low cost. Dry forests of South
America were the most studied, followed by dry forests of
Africa, and North America.

Ecological indicators have several purposes since they
can be used to assess current vegetation conditions, moni-
tor patterns and ecosystem processes, and predict future
changes. Moreover, indicators are able to identify the cau-
se of an environmental problem and allow us to quantify
its magnitude (Noss 1990). For an accurate assessment,
the complexity of ecosystems requires a suite of indica-
tors that represent their three key aspects, i.e. composition,
structure, and function, always considering that these fea-
tures can be assessed at various hierarchy levels, from po-
pulation to landscape (Dale and Beyeler 2001). Our results
show that most research assessed one or two ecological
attributes, and just over 18 % assessed three ecological at-
tributes. However, the choice of ecological indicators and
hierarchy level is not defined only by research objectives,
but also involves a combination of appropriate features,
costs, and feasibility. The most studied tree genera were
Neltuma spp. (7 articles) and Pinus spp. (4 articles). Most
research on Neltuma spp. (n = 4) evaluated only functional
attributes using remote sensing data. Most research studies
on Pinus spp., assessed structural and functional attribu-
tes by combining remote sensing and field survey data.
Particularly, for Neltuma tamarugo Phil., remote sensing
data has become an important tool to quantitatively assess
and monitor its water stress, ranging from experiments to
large-scale spatiotemporal studies (Decuyper et al. 2016,
Chavez et al. 2013). Including different hierarchy levels
of scaling from leaf traits to canopy structure and regional
patterns requires an integrated understanding of plant phy-
siology, ecology, and biogeography with remote sensing
data (Farella et al. 2022).

The increasing availability of data on drylands ecosys-
tems was enabled by the advent of remote sensing tech-
niques in the 1970s (Smith ez al. 2019). Remote sensing
data is a powerful tool to evaluate current and retrospecti-
ve conditions of an ecosystem since it allows quantifying
and classifying attributes of composition, structure, and
function at different hierarchy levels. Until this occurred,
drylands had fewer ground observations and research re-
ports than more humid, and typically more developed,
areas (Smith et al. 2019). Our results showed that compo-
sition and function attributes were mainly assessed with
remote sensing data, i.e. land cover classes (for composi-
tion) and through green indices (i.e. Normalized Differen-
ce Vegetation Index -NDVI-, Enhanced Vegetation Index
-EVI-, Soil Adjusted Vegetation Index -SAVI-, Soil Adjus-
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Table 5. Remote sensing data used in the selected articles: data source, spatial resolution, temporal resolution, sensor (passive/active),

free access (indicated with X if remote sensing data is free).

Datos de teledeteccion utilizados en los articulos seleccionados: fuente de datos, resolucion espacial, resolucion temporal, sensor (pasivo/
activo), libre acceso (indicado con X si los datos de teledeteccion son gratis).

Data source Spatial Temporal Sensor: Free
Resolution Resolution passive/active access

MODO09A1 (MODIS TERRA) 500 m Multi-Day passive X
MOD11 (MODIS TERRA) 1,000 m Daily passive X
MOD13Q1 (MODIS TERRA) 250 m Multi-Day passive X
MODI13A3 (MODIS TERRA) 1,000 m Monthly passive X
MOD15A2 (MODIS TERRA) 500 m Multi-Day passive X
MODI15LAI (MODIS TERRA) 500 m Multi-Day passive X
MOD16A2 (MODIS TERRA) 500 m Multi-Day passive X
MOD17A (MODIS TERRA) 500 m Multi-Day passive X
MYDO04 L2 (MODIS AQUA) 10,000 m 5 minute passive X
MYDO05 L2 (MODIS AQUA) 10,000 m 5 minute passive X
MYDO06 L2 (MODIS AQUA) 10,000 m 5 minute passive X
MYDO7 L2 (MODIS AQUA) 50,000 m 5 minute passive X
MYDI11 (MODIS AQUA) 1,000 m Daily passive X
MYDI11_A2 (MODIS AQUA) 1,000 m Multi-Day passive X
MYDI11 L2 (MODIS AQUA) 1,000 m Daily passive X
MYDI13Q1 (MODIS AQUA) 250 m Multi-Day passive X
MCDI12C1 (MODIS TERRA/AQUA) 5,600 m Yearly passive X
MCD12Q1 (MODIS TERRA/AQUA) 500 m Yearly passive X
MCD15A2 (MODIS TERRA/AQUA) 500 m Multi-Day passive X
MCD43A2 (MODIS TERRA/AQUA) 500 m Daily passive X
MCD43A3 (MODIS TERRA/AQUA) 500 m Daily passive X
MCD43A4 (MODIS TERRA/AQUA) 500 m Daily passive X
MCD43B2 (MODIS TERRA/AQUA) 500 m Daily passive X
MCD43B3 (MODIS TERRA/AQUA) 500 m Daily passive X
Landsat 5 TM 30 m 16 days passive X
Landsat 7 ETM+ 30 m 16 days passive X
Landsat 8 OLI 15m 16 days passive X
Google Earth 15 m-15 cm passive X
Digital Elevation Model (DEM) / ASTER 30 m passive X
Digital Elevation Model (DEM) / SRTM 30m-90m passive X
Digital Hemispherical Photography (DHP) passive X
Sentinel 2 10 m 5 days passive X
Ikonos-2 Im 3 days passive

Unmanned Aerial Vehicles (UAVs) passive

QuickBird 0.6 m 2 a 12 days passive

RapidEye S5m Daily passive

WorldView 2 0.46 m 1.1 day passive

GeoEye-1 041 m 3 days passive

Contiue
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Continue Table 5.

SPOT 2.5m 2-3 days passive X

Hyperion sensor satellite EO-1 30 m 16 days passive

Advanced Very-High-Resolution Radiometer . .

(AVHRR) 1 km daily active X

Along Track Scanning Radiometer (ATSR) 1 km 1 -3 days active X

Sentinel 1 20x22m 12 days active X

Advanced Microwave Scanning Radiometer - Earth .

Observing System (AMSR-E) 1,450 km 2 days active X
. . monthly, daily, .

Tropical Microwave Imager (TMI) 27.75 km sub-daily (3hrs) active X

JERS-1 5-20m 44 days active X

ALOS PALSAR 25m 46 days active X

Autonomous System from Transmittance . .

Instantaneous Sensors oriented at 57° (PASTIS-57) 20m I to few minutes active X

Light Detection and Ranging (LiDAR) 10 m active

ted Total Vegetation Index -SATVI-), Surface Temperatu-
re (ST), anthropogenic disturbances, and Solar radiation
(SR), for function attributes. Particularly AGB, is the se-
cond indicator most assessed with field survey data, but al-
most all research studies attempted a good fit with remote
sensing data. In general, forests play a vital role in global
carbon flux and act as carbon sinks by storing biomass,
over a long period of time (Salunkhe ef al. 2018). For an
accurate estimation of biomass based on remote sensing
data, it is essential to calibrate and validate this data with
field measurements of biomass. According to the fourth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change (IPCC 2007), scarce information is availa-
ble concerning biomass, and carbon stock/sequestration at
national and regional levels. Finding a good adjustment
between AGB from field survey data and an indicator ob-
tained from remote sensing data would allow extrapolation
to large areas, or at a high hierarchy level (i.e. community/
ecosystem, landscape/region). Moreover, one of the main
advantages of remote sensors is the availability of images
with a different temporal resolution that allows monitoring
and time-series analyses of vegetation conditions. These
multi-time series of remotely sensed vegetation data facili-
tate our understanding of patterns and processes in dryland
ecosystems (Smith ez al. 2019), in addition to holding pro-
mise for future predictions of changes.

Of the 88 articles analyzed, only four report a weak re-
lationship between field surveys and remote sensing data,
or consider that other less expensive methods are more
efficient for assessing attributes in dry forests. Probably,
due to the vegetation conditions in some dry forest areas,
it is more effective to use high-resolution images. Howe-
ver, their acquisition cost could be a significant barrier to
research in ecology. The selection of images acquired is
largely determined by: mapping objective (i.e. what to be
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mapped), cost of images (high-resolution images are very
expensive), climate conditions (mainly related to clouds),
and the technical issues for image interpretation (related
to image quality, preprocessing and interpretation) (Xie
et al. 2008). From our systematic review it emerges that
Landsat and MODIS were the most frequently used sou-
rces of satellite imagery of the Earth to evaluate dry fo-
rest conditions. Particularly, the Landsat archive with me-
dium spatial resolution provides a history of land surface
changes over the last 50 years (since the 1970’s decade)
through images with different spectral resolutions (Wulder
et al. 2012). This extensive time series allows us to look
at changes over time, which would not be possible even
if extensive ground-based monitoring were to begin now.
Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper plus (ETM+) have proven capable of obtaining
forest variables both at local and regional scales. Besides,
another main advantage of Landsat images is their free
availability in comparison with higher resolution images.
MODIS (Moderate Resolution Imaging Spectroradiome-
ter) is a key instrument aboard Terra and Aqua satellites.
Terra MODIS and Aqua MODIS satellites are together
able to record data from the global land surface area with
a temporal resolution of 1-2 days, unlike Landsat which
has a temporal resolution of 16 days (Gao et al. 2020). The
images gathered from MODIS are principally used to map
changes in the dynamics of vegetation cover and proces-
ses. However, unlike Landsat images, mapping at a fine-
scale spatial analysis (i.e. local or regional) is not recom-
mended with MODIS images due to their coarse spatial
resolution (ranging from 250 to 1 km). However, image
fusion or combination of MODIS with imagery of higher
spatial resolution could lead to achieving more accuracy
and precision in mapping results (Xie et al. 2008). Another
key characteristic to be considered is that, as well as Land-



sat, images from MODIS are freely available, being an
important data resource for assessment and monitoring of
dry forest conditions in developing nations, where costs
are usually the most important consideration in the deve-
lopment of research.

The Food and Agriculture Organization of the United
Nations (FAO) defined forest as “land spanning an area of
more than 0.5 ha with a tree cover over 10 % that is not
predominantly used for agriculture or urban land use, as
well as land on which tree cover is temporarily under 10 %
but is expected to recover”. Following these parameters,
Bastin et al. (2017) estimated that Africa is the continent
with the largest forest area in drylands (26.56 % of the glo-
bal dry forest cover), followed by Asia with 19.78 %, Nor-
th America with 18.94 %, South America with 18.29 %,
Oceania with 10.58%, and the lowest for Europe with
5.85 %. According to our results, South America is the
continent with the largest number of studies of dry forest
conditions with remote sensing data (46.67 %), followed
by Aftrica (26.67 %) and North America (14.44 %). Whi-
le Africa is the continent with the largest forest area in
drylands, it has predominantly open forests (i.e. with 10
to 39 % tree canopy cover), unlike South and North Ame-
rica where around 80 % of dry forest areas are closed fo-
rests. Dealing with open forests is a significant challenge
in remote sensing, especially when compared to closed
forests which have more than 40 % tree canopy cover.
On the other hand, it is important to highlight that most
of the studies of dry forests of South America have used
free remote sensing data. Taking into account all articles
analyzed, only 27.27 % considered remote sensing data
that is not freely available, i.e. very high spatial resolution
imagery. Each increase in spatial, temporal, and spectral
resolution of images, results in an exponential increase
in the amount of critical information held in each pixel.
However, this higher resolution will most likely increase
costs. As claimed by Xie et al. (2008) this seems to be an
important issue to consider in the process of image selec-
tion for research purposes.

Unlike optical sensor images, Synthetic Aperture Radar
(SAR) sensors provide information about forest vertical
structure or stand volume because they can penetrate the
canopy (Zhao ef al. 2016). They transmit microwave sig-
nals and measure the backscattered energy returned from
the lighted target, thus allowing obtaining information on
land surface features. These sensors show different abili-
ties to penetrate vegetation canopies because they trans-
mit different wavelengths (Flores-Anderson et al. 2019).
Moreover, SAR images can be acquired day or night, and
are not affected by weather conditions, as happens with
images from passive sensors (Flores-Anderson et al. 2019,
Zhu et al. 2012). SAR images, in a similar way to optical
sensors, allow for continuous and systematic acquisitions
of Earth land surface images required to build temporal
series. Despite all these advantages, SAR images are in-
frequently used to assess dry forest attributes. Moreover,
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observations and products from a single sensor would not
be enough to know the conditions of dry forests. Campos
and collaborates (2022) found that multi-sensor models
that included data from passive (i.e. SD of EVI and SAT-
VI) and active (i.e. VV co-polarisation) remote sensors,
showed a higher explained variance (up to 89,6 %) com-
pared with single-sensor models (up to 82,9 %). Pastick
and collaborators (2018) using a regression tree modeling
approach that combined data from Landsat and Sentinel
2 significantly improved the characterization of dryland
phenology. Another promising method is data fusion
from multiple sensors, which could be a better integrative
analytical technique to represent vegetation dynamics in
drylands (Smith ef al. 2019). Just as it is not recommended
to use a single ecological attribute to represent the com-
plexity of these ecosystems, the observations and products
from a single sensor often cannot adequately resolve their
complex dynamics. The integration of remote sensing data
acquired from diverse sensors (i.e. passive, active), with
diverse spatial and spectral resolution, could enhance our
comprehension of dry forest attributes, which still remain
in an area of relatively limited knowledge.

CONCLUSION

Ecosystem integrity assessment refers to system who-
leness, including presence of appropriate species, popula-
tions, and communities in suitable environmental condi-
tions. This integrity includes assessment of compositio-
nal, structural, and functional attributes of ecosystems.
Taking this into account satellite remote sensing has been
instrumental in the assessment and monitoring of spatial
and temporal variations in forest ecosystems. However,
dry forest remote sensing has been difficult due to uni-
que challenges such as high soil background reflectance,
high spatial heterogeneity and irregular growing seasons,
periods of drought, senescent vegetation, with small leaf
areas or leafless. In our systematic review, we found that
more than 60 % of articles consider only one ecological
attribute of dry forest vegetation, with functional attributes
being the most assessed with use of remote sensing data.
We think that considering only one attribute could lead to a
partial understanding of the patterns and processes of that
ecosystem. This oversimplification can lead to poor mana-
gement programs and decisions. A key challenge is to find
a group of good indicators able to cover the spectrum of an
ecosystem’s ecological variations.

Despite being the fourth in dry forest areas, South
America is the most studied continent, and most of the
studies have used free remote sensing data. In summary,
out of the 88 articles analyzed only 27 % of the research
works used not-freely-accessible remote-sensing data. We
want to stress that availability of free remote-sensing data
is a key condition for research development and ecolo-
gical studies. Free and open access was a true paradigm
change toward expanding remote sensing data utilization;
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this change improved the depth and scope of the science
questions and applications undertaken. Moreover, concu-
rrent with the free and open data policy, the availability of
collections and products ready to be used by users impro-
ves and reduces time in processing and obtaining research
results.

Passive sensors were the most used in the assessment
of dry forests, despite active sensors having the potential
to advance our current understanding of dryland ecosys-
tems. We considered that future works should be focused
on multi-sensor and multi-spatial data, i.e. from passive
and active sensors, because their combination should be
able to identify and quantify different attributes of dry fo-
rest ecosystems, from stand scale to landscape.

The gap in the knowledge of dryland remote sensing
should be a top research priority since it is necessary to
define effective and efficient remote sensing indicators of
dry forest conditions. These indicators could be a valuable
tool for dry forest management and conservation in diffe-
rent world regions.
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SupplMatl. Publication meta-data and geographical context of the 88 articles included.

Metadatos de publicacion y contexto geografico de los 88 articulos incluidos.

Publication Meta-Data

Geographical Context

ID Author Date Title Journal Continent Geographical Unit
1 Benedictto 2019 Structural and functional ormaﬁ.a:Nmzo: of the dry forest in Central Madera y Bosques South America  Central Argentine Chaco
Argentine Chaco
2 Cannon 2020 . m_EcEHEm spatial ooa_u._@x:v\. E.Q.J\ o.oEmQ forest a.@mﬂoaﬁ_osm Landscape Ecology North America Montane Forest
implications for conservation prioritization and scenario evaluation
3 Galvincio 2013 LAI Improved to dry forest in semiarid of the Brazil Hbagwcoﬂ.&_ uocE.m ! o.m Remote South America Caatinga savannah
Sensing Applications
. Comparing Forest Structural Attributes Derived from UAV-Based . .
4 Gobbi 2020 Point Clouds with Conventional Forest Inventories in the Dry Chaco Remote Sensing South America Dry Chaco
5 Zm_awsmao- 2020 Trend and variability omZU/\H of ﬁ.ro maim <m.nm2mso: types in the Revista Mexicana de Biodiversidad North America Tropical dry forest
Enriquez Cape Region of Baja California Sur
6 Campos 2018 Remote sensing .%:.m to assess compositional and structural Ecological Indicators South America Dry forest
indicators in dry woodland
7 Altun 2008 Comparing Bo%o.mm .H.,Oa determining forest sites: a case study in European Journal of Forest Europe, Asia  Karanlikdere Forest District
Giimiishane-Karanlikdere forest Research
3 Andrade 2020 Evaluating single m.:m multi-date Landsat w_mmm_momzosm of land- WQBQ.Q Sensing »A.%:omzosm“ South America Caatinga forest
cover in a seasonally dry tropical forest Society and Environment
9 Baena 2017 Identifying species form the air: UAVs and Eo.éQ high resolution Plos One South America Forest
challenge for plant conservation
Detection of Trend Change-Point in Passive Microwave and Optical . .
10 Barraza 2016 Time Series Using Bayesian Inference over the Dry Chaco Forest Proceedings South America Dry Chaco Forest
Comparison of the performance of latent heat flux products over South
southern hemisphere forest ecosystems: estimating latent heat flux International Journal of Remote . Dry Chaco Forest and North
11 Barraza 2018 ... . . . America, .
eror structure using in situ measurements and the triple collocation Sensing . of the Australia
Oceania
method
12 Bhattarai 2020 Assessing spatial patterns .ow forest anmammm:o.s in dry Miombo Cogent Environmental Science Africa Miombo woodands
woodland in Southern Tanzania
Uv\:maﬁm of mwmv Eon:u:m:ﬁr <am$m:.o= mza NDVI in dry forest Journal of Archacological Science: .
13 Burry 2017 environments in NW Argentina. Contributions to environmental Reports South America Dry forest
archaeology p
14 Carranza 2014 Measuring forest fragmentation using 5&:85@03_ remotely European uo:Bm_ of Remote South America Gran Chaco dry forest
sensed data: three decades of change in the dry Chaco Sensing
A scalable approach to mapping annual land cover at 250 m using
15 Clark 2017  MODIS time series data: A case study in the Dry Chaco ecoregion Remote Sensing of Environment  South America Gran Chaco dry forest

of South America

30



BOSQUE 45(1): 17-41, 2024
Remote sensing to assess dry forests

11959p pUY

jsa10) A1

18910,

15010J AIp 00BY)) UBID)
159103 AIp 098y UBID)

15910J AIp 00BY)) UBID)

yeuueAes A1

yeuueAes A1

yeuueAes A1

38910} A1

Payoed] uo euueAeS

SPUBR[POOM [[BUUBAES

uonea3oA
Apoom pue 3s910,]

SPUB[POOM OQUIOTJA]

e3unee)

(3s0103 A1p) [RUIdSH

BOLIOWY HION

BIUBIOO

eIsy ‘adoinyg

BOLIOWLY INOS

BOLIOWY INOS

BOLIOWY INOY

BOLY

eoLyY

BILYY

eIV

eoLyY

eILYY

BISY

eoLyY

BOLIOWY UINOS

BOLIOWY INOS

£301010010]\
1S910,] pue [eIMNILISY

UOTJBAIOSUO))

pue A301007 Ul SUISUOS JOWY

SI0SUQS

K3ojo1g 93uey) 1eqoiH

a3uey)) [BIUSWUOIIAUF [BUOITY

SJUSWUOIAUF PLIY JO [BUINOf

182104 wIayinos

[euoneuIaiu] 031ed3090)

BOLIY YINOg Jo

£)2100¢ [eA0Y Y, JO SuoIjoeSURL],
JUQWIUOIIAUH JO SUISUS JOWY

[0189sY A1)$210,] JO [euInOf

[BUOTIBUIDIU] 0}1BI0ID)

N7

KydeiSoon parjddy

JUSWIUOIIAUH JO SUISUIS )oY

K3o0j01pAyooyg

93e19A09 15210}
PUB [1MO0I3 931} UO SSAUIIM PUB SSQUAIP JO sjordl OLOWWAS Y

od4y 1sa103 £q
SoLIBA 1Nq ‘A10A0091 19SUO] 0} SPEI] $1SAI0J UL 9JURQINISIP 1Y YSTH
Koxan] woy
ApniS 9se)) Y :SPOYIIA SUISUSS 2JOWdY Pue JoIIpU] 9011 SuIsn)
S9)1G 15010, (Asd1T siejuario sn3e,J) yoadg [BIUSLIO SUIAJISSBID
BUNUOSIY UIOYLI0UJ0SISAI0JAIP[eo1donodN
9} UT UOTJBAIOSTUOD dInjeu pue uononpoid pooj Surouereg

0ory) AI(] BUNUSSITY UISYLION dY} WO} SUOSSI]
:SPUB[POOM PLIBILUOS Ul SSBWIOL] JO S[01U00 pue sutoped [euoioy

BUNUISIY JO S1SA10] AIp [eordonqns ul SSewolq punoi3-oA0qe
Suryewnsa 10J sogewl +A LH £ yespue] [erodwdl-ninw JuIssassy

SI0SUdS [enoadsnnu
uonnjosal-feneds wnipaw pue Y3y Jo souewrojrod ay) Suriordxo
:oMqequuiIZ JO $1s210) AIp [eordox) ur s)003s U0qIed }s910J Junewnsy

sI0SUDs [endadsynur UONN[OSAI
Teneds wnipaw-pue-y3iy jo ooueurioyrod ay) Suniodxa :omqequirz
‘euueA®S AIp © UI UOIBUWINSI SWN[OA POOM JSII0] SNOUSIPU]

UOIBWNSI S00IS UOQIED }SAI0J UI
pueq 93pa pa1 Ay} JO 3032 2y} Surio[dxy :omqequilz Jo SiSAI0) AIp
ul BIEp J[[2JeS UOIN[OSAI YSIY WOIJ $Y00IS U0QIed 15910 FurloIpaid

1S910J PUBJAIP UBOLI}Y 1sop\ ul Surddew mmeoE vS.SHw-o\VODR

seare pojosjord oSo],
UISYI0U Ul SoSUBYD JOA0I-PUR] PUB dSN-PUE] JO SULIOHUOW )I[[A)eS

10SUQS Z-MITA PIIOA
uoneIdudd mau oy Jursn Ayanonpoid 3$010§ Jo 10jBIIpUI U
Se SPUB[POOM BUUBAES UI SSBWOIq SUIpue)s 153103 Sunewnsg
Sealy pLIy 0} plung-qng ut
I0A0)) UONILIOT0A APOOA\ PUE 15010, JOJIUOIA PUE J00J(] O} POUIIA
ordwig pue MON V :pIoysaoIy [, drweuA(q dAnIsuaS-uoneidoard
15210 AIp Ul UONEPERISIP }5210] JO UOnEWISI 10§ ydeoidde 10a11put
uy 9 sjonpoid 3s210J JO UONIBIIXD 0Ud)sisqns Jo suroned [eneds
e3unjee)) uerizerg Oy} WOIJ OJUOPIA :S)SOIO0]
K1p A|euoseas ur JuLres]d 10A00-pue] 10J Ax01d & se opaqe doeymng
KJIATIOR OTWISIOS puB
Aj1[IqeLIeA [[eJulel ‘FULIBI[O 1SOIO0F JO SOOI A} :BUNUISIY [BNUD JO
odeospue| ATejudWIPIS PLIBIWAS € UI UOHBULIOJ 9SIN0d1djem Jdniqy

020¢

610¢

800C

800C

€10T

010¢

910¢

S10T

S10c

0c0T

¥10¢

910¢

0c0T

¥10¢

610¢

cloc

oen

doysriy

nuno

nein
1edsen

1edsen)

BIBD)

BIRD

BIRD

JONMIO]

e39104

aqnQ

1101(]

suo(q

BN

Ssela.nuo)

53

0¢

6C

8¢

LT

9T

94

14

€C

(44

IC

0T

61

81

Ll

91

31



BOSQUE 45(1): 17-41, 2024

Remote sensing to assess dry forests

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Hojdova
Houspanossian
Hoyos
Liu
Miranda
Marchesini

Martinez

Mitchard

M’mboroki

Sun

Monteiro
Junior

Nosetto

Powell

Quintdo de
Almeida

Raymaekers
Rueda

Schultz

Sitters

2005

2013

2018

2017

2020

2014

2008

2011

2018

2019

2018

2020

2018

2014

2014

2015

2018

2011

Microclimate of a peat bog and of the forest in different states of

damage in the Sumava National Park Silva Gabreta

Radiation budget changes with dry forest clearing in temperate

Argentina Global Change Biology

International Journal of Geo-
Information

A Multivariate Approach to Study Drivers of Land-Cover Changes
through Remote Sensing in the Dry Chaco of Argentina

Vegetation Dynamics in the Upper Guinean Forest Region of West
Africa from 2001 to 2015

Forest browning trends in response to drought in a highly threatened
mediterranean landscape of South America

Remote Sensing

Ecological Indicators

Changes in evapotranspiration and phenology as consequences of

shrub removal in dry forests of Central Argentina Ecohydrology

An assessment of Hawaiian dry forest condition with fine resolution

. Forest Ecology and Management
remote sensing

Measuring biomass changes due to woody encroachment and
deforestation/degradation in a forest—savanna boundary region of
central Africa using multi-temporal L-band radar backscatter

Remote Sensing of Environment

Climate change impacts detection in dry forested ecosystem as
indicatedby vegetationcover change in —Laikipia, of Kenya

Environmental Monitoring and
Assessment

Identification and assessment of the factors driving vegetation
degradation/regeneration in drylands using synthetic high
spatiotemporal remote sensing Data—A case study in Zhenglanqi,
Inner Mongolia, China

Ecological Indicators

Dynamical spatial modeling to simulate the forest scenario in

Brazilian dry forest landscapes Geology, Ecology, and Landscapes

Contrasting CO2 and water vapour fluxes in dry forest and pasture

sites of central Argentina Ecohydrology

Characterization of forest carbon stocks at the landscape scale in the

Argentine Dry Chaco Forest Ecology and Management

Empirical relationships between dendrometric characteristics of the
Brazilian Caatinga and TM Landsat 5 data

SPOT-VEGETATION GEOV1 biophysical parameters in semi-arid
agro-ecosystems

Pesquisa Agropecuaria Brasileira

International Journal of Remote
Sensing

Charcoal production in the Argentine Dry Chaco: Where, how and
who?

Forest Cover and Vegetation Degradation Detection in the Kavango
Zambezi Transfrontier Conservation Area Using BFAST Monitor

Energy for Sustainable
Development

Remote Sensing

Rainfall-Tuned Management Facilitates Dry Forest Recovery Restoration Ecology

Europe

South America

South America

Africa

South America

South America

North America

Africa

Africa

Asia

South America

South America

South America

South America

South America

South America

Africa

South America

Dry forest
Dry forest
Gran Chaco dry forest

Savannah woodlands

Savannah and
Mediterranian

Gran Chaco dry forest and
Monte

Dry forest

Forest and Savannah

Dry forest

The north is semi-arid
and the south is temperate
continental monsoon

Caatinga

Chaco dry forest and
Espinal

Chaco dry forest
Caatinga
Chaco Seco Ecoregion
Chaco dry forest

Savannah and Dry forest

Dry forest

32



BOSQUE 45(1): 17-41, 2024
Remote sensing to assess dry forests

382103 A1
35210} A1

18210} A1

e3unee)

15210J AIp 00BYD)

18910} K1

382103 A1q
35210} A1

18210} A1

1382103 A1

1sa10] A1

yeuueaes A1

352103 A1

1sa10] A1

389103 A1
382103 A1

35210} A1

BIUBIOQ

BOLIWY INOg

BOLIOWY YHON

BOLIOWY INOS

BOLIDWY (JNOS

eIV

eV

ey

BOLIOWY INOS

BOLIOWY INOS

BOLIOWY INOS

eIV

BOLIOWY [HON

BOLIOWLY YLON

eIV

BV

BOLIDWY JON

juowdFeury pue £301007 15210,
Aydei3oan parddy

JUQWIUOIIAUF JO SUISUIS 9J0WY

SJUSWUOIIAUF PLIY JO [eUINOf

SJUSWUOIIAUF PLIY JO [eUInOf

UOTJBULIOJUION)
pue uonealesqQ e addy
JO [BUINO[ [RUOT}BUIdIUL

Kydeidoan parddy
JUSWIUOIIAUH JO SUISUS JOWY

SJUOWIUOIIAUF PLIY JO [eUINOf

SJUSWIUOIAUF PLIY JO [BUINOf

UOI}BULIOJUIOdD)
pue uonealasqQ yued addy
JO [BUINO( [BUOTJBUISIUT

JUQWIUOIIAUH JO SUISUS )oY

juowdeuR]\ Pue A30[095 15210

SJUSWUOIAUF PLIY JO [eUINOf

Suisuag
jowdy Jo [euanof ueddoinyg

J3uey)) [BIUSWUOIIAUY [BUOISY

Suisuog ojowoy

BI[ENSNY UIOJSOA\ JO BAIR PLIE UB Ul SUISUdS djowal 0} uoneorjdde
10J 93eI19A09 Adoued Aq poyjow uonewNsd SSeWolq puels

(800T-SL61) A1IYD [e3U)
Jo odeospue] }s210] puB[AIp 94} JO 2ZUBYD JIOA0D puUL| SULIOIUOIA
VS UI0ISoMYINOS
oY) ur SuLIo)IUOW J$310 10§ UOIsNy [exoadsorodAy pue Iepi| AV

BOLIOUWIY INOS UI SN[ONU ISA10J AIp
3s98re] oy Ul sagewl AI[[OIeS YIIM SSAUYOLL sa109ds jueld Sunorpaig

0dey) A1 ayp ur sdoro Aq $3s210J AIp 9A1RU
Jo juawooeldar oyp 03 pajelal uonnted soxny Iajem Ul soSuey)
pue[I[eWOS ‘BSIAZIBY I0JUOIOI[IS
K1oSeuw [erodurd) pue SpOYJOU JUSIOIFIPJOSSIUOATIO9JoSunENneAq
:SJUOWIUOIIAUD pLIE Ul Blep § jespue] yum “ddssidosorg3urddeiy
(099010]A)) SpUB[POOM UBSIE O} JO ISED Y[, :SPUB[POOM
PUE $1S210J PLIB-IWAS PUB PLIE Ul UOIIEPRISOP SULIOIUOIA
JedSeSEPRIA Ul [BASLIIOI SSBUIOI] }S210] 10 BIEP JOA0D 931}
PIALIOP-JeSpUBT PUB YVSTVd SOTV SUIUIqUIod Jo AN[EA [BNUNO]
119S9(J BUIBOR]Y o) Ul o3niewe) sidosord uo uonoenxa
10)eMpunois Jo 109139 Yy ssasse 03 yoeoidde ofeos-nnuw y
H(eyD wIdyLIoN)
11089(J eweor)y pLIe-1odAy 9y ur 9AIAINS $931) oFniewre) sidosord
ue)) :uIseq [esniewe], [op edwed dy) Ul UONOBNXI JOJEM JO SIBAA ()G

SSo1}SI)EM O}
ognrewe) s1doso1q 9913 119sop oy} Jo asuodsar [enoads oy) Surj[opoN

AVSTVd SOTV WOI POALISp UONNOSAI UI T Je
SPUB[POOM PUE SYBUUBALS UBOLIFY JO dew SSeworq punoIg-oAoqe uy
Sursuos jowal
uonn[osal UL YIM UOTHIPUOD ISAI0) AIP UBITEMEH JO JUSWISSISSE UY
OOIXJA
‘ing eruiojie) efeq jo aseo oy [, :SuIsuds djowal [enoadsnnu
Jursn s3s910J A1p uo oFewep auo[9Ad [eo1d0o1) JO JUSWSSISSY
erdory)g UIS}SOMTIIOU UT UOT}OR}AP dFULYD
pUE UOTJBOYISSE[O JOA0D pue] [erodwo)-inw paseq SUISUSS 9JOWY
010C PUB €61 Ud0MIaq ‘TeoseSepen
9qBUQA [e1)USO o) UI SuIo)jed UONE)SaI0JIp JO SISA[euy
SOWNXH dBWI[)
w9 -10YS 03 15910, pue[AI( BUOZIIY UE Jo osuodsay [edrdojouayd

900¢

oroc

L10¢

610¢

0c0¢

910¢

41114

810C

910¢

910¢

€10T

810C

800C

020¢

S1oc

€10T

S10T

ewnuedng

Z|ngdg

Koyues
SOITOPIIN
BAJIS @

rIRWES

zon3Lpoy

3N

XNOTBA\
op ure[od 9

YUuIN
Suo], oy

ITodAnoa(

zoAgyD

zZongy)

joAnog

SO[BIOIN
ZOUNIBIA

sowrey
-$9110))

olpmayz
Jouury

1¥[eM

99

S9

9

€9

9

19

8¢

LS

9¢

99

125

139

[43

IS

0S

33



BOSQUE 45(1): 17-41, 2024

Remote sensing to assess dry forests

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Fontarbel

Sitters

Borak

Bradley

Mapfumo

Mayaux

Mayr

Beuchle

Clark

Gobbi

Goenaga

Grinand

Ozdemir

Qarallah

Queiroga
Miranda

Schneibel

2007

2011

2015

2006

2016

2010

2017

2015

2021

2022

2013

2013

2011

2021

2017

2017

Evaluacion de la pérdida de la cobertura del bosque seco chaquefio
en el Municipio de Torotoro y en el Parque Nacional Torotoro
(Potosi, Bolivia), mediante teledeteccion

Rainfall-T unedManagementFacilitatesDryForest Recovery

The use of temporal metrics for land cover change detection at
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SupplMat2. Type of data, dry forest attributes, and data source of the 88 articles included.

Tipo de datos, atributos del bosque seco y fuente de datos de los 88 articulos incluidos.

Data Attributes of dry forest
b RS+FS RS Composition Structure Function
tree species identity, species richness,
1 X relative abundance, evenness, species DBH EVI
density
2 X tree species identity Canopy covet, canopy bulk density, SWI, TWI, SR
tree height
3 X LAI, FAPAR, NDVI
4 X species richness DBH, tree height, tree density
5 X land cover classes NDVI
6 X tree species identity, species richness DBH, tree height, canopy cover SATVI, texture measures
7 X tree height, soil conditions
8 X density, land cover classes tree height NDVI
9 X tree Sslfﬁ;e(faffst;z;lrt Zlatlve canopy cover GV, NPV
10 X EVI
11 X ET
12 X AGB, species occurrence, land cover DBH, height .of stumps, pz.ltches anthropogenic disturbances
classes configuration and metrics
13 X NDVI
14 X land cover classes
15 X land cover classes NDVI, EVI, bands
16 X land cover classes NDVI, watercourse
17 X land cover classes ant}’?:;g;;r]igﬁigﬁggr,lces
18 X land cover classes NDVI.’ anthropogenic
disturbances
19 X NDVI
20 X AGB, species occurrence, land cover DBH SR. NDVI, SAVI, bands
classes
21 X land cover classes NDVI
22 X land cover classes DBH LAL FC\?\\Z F{IR}’I FAPAR,
23 X species occurrence, land cover classes DBH, tree height SR, NDVI, SAVI
24 X DBH, tree height SR, NDVI, SAVI
25 X species occurrence, land cover classes DBH, tree height SR, NDVI, SAVI
26 X AGB, tree volume NDVI, SAVI, NDMI
27 X AGB, tree volume, density,.land cover DBH EVI, N.DV.I, ST,
classes, wood density anthropogenic disturbances
28 X land cover classes
29 X tree species identity, land cover classes  soil conditions, altitude, slope, aspect ST, DI
30 X land cover classes soil conditions NBR, ST, DI
31 X tree species identity, land cover classes RWI
32 X land cover classes ST
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33

34

35
36
37
38
39
40
41
42

43

44

45
46
47
48

49

50
51
52
53

54

55

56

57
58
59

60

61
62

63

64

65

66

67

land cover classes

Tree species

species richness, species density
AGB
land cover classes
land cover classes, AGB

land cover classes

AGB, wood density, land cover classes

tree volume

AGB, land cover classes

land cover classes

tree species identity

land cover classes

species richness, species density
AGB
tree species identity

tree species identity
tree species identity
AGB

tree species identity, relative
abundance, species density

tree species identity, land cover classes

tree species identity, species
occurrence, species density

land cover classes
tree species identity, species richness

land cover classes

Albedo, NDVI, ST

soil conditions, altitude, slope,

anthropogenic disturbances
aspect

soil conditions EVI, NDWI, TCT
DBH, canopy cover, elevation NDVI, TWI
albedo, ST, ANPP, ET
DBH, tree height, canopy cover
DBH, tree height HH, VH

tree height, altitude, slope, aspect NPP, ST, MI, S

EVI, NDVI, ST, water
vapor air concentration, H,
LE, NR-G

soil conditions

tree height, soil conditions,
altitude, slope, aspect
DBH, tree height NDVI, SR, SAVI
LAI FAPAR, PAL, NDVI

anthropogenic disturbances

SAVI, NDMI
dens‘lty an.d cover of adl.llt trees, NDVIL TWI
juveniles and seedlings
altitude, slope, aspect NDVI, SR
DBH NDVI
NDVI, EVI

NDVI, texture co-
occurrence measures

tree height, SBA HH, VH

LAL RVI, NDVI, WDRVI,
WI, NDWI

GWD, NDVI
GWL, NDVI
DBH HH, VH

DBH, tree height, canopy cover

SRI, ST, anthropogenic
disturbances

NDVI
NDVIL ET

SR, NDVI, SAVI, EVI,
LAIL NDMI, NDWI, DVI

altitude, slope, aspect

tree height, canopy cover

DBH, tree height, canopy area,

SBA LAI

patches configuration and metrics
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68 X species density, cover NDVI, TWI
69 X NDVI
70 X land cover classes
71 X species richness, status NDVI
72 X NDVI
73 X abundance
74 X tree abundance, land cover classes canopy cover, tree height
75 X land cover classes
76 X canopy height, tree height
77 X vegetation cover
78 X vegetation cover
79 X tree abundance basal area, stem volume, DBH
30 X tree abundance, basal area, stem C;:?;;’ iﬁ;;i?ﬁigeéﬁf;iiiiu
volume, DBH conten t’
81 X ET
82 X disturbance index
83 X tree cover
84 X NDVI
85 X NDVI, EVI
86 X canopy cover
87 X richness, abundance of trees variance in canopy area SATVI, texture measures
38 X trees and shrubs biomass, abundance variance in canopy area SATVI, EVI_, Vy and VH
of trees polarisation

AGB: Above Ground Biomass, ANPP: Aboveground Net Primary Productivity, DBH: Diameter at Breast Height, DI: Drought Index, DVI: Difference
Vegetation Index, ET: Evapotranspiration, EVI: Enhanced Vegetation Index, FCOVER: Fractional Vegetation Cover, FS: Field survey, GV: Green
Vegetation, GWD: Groundwater Depth, GWL: Groundwater Level, H: Heat Flux, HH: horizontal-horizontal polarization, LAI: Leaf Area Index, LE:
Latent Heat Flux, MI: Moisture Index, NBR: Normalized Burn Ratio, NDMI: Normalized Difference Moisture Index, NDVI: Normalized Difference
Vegetation Index, NDWI: Normalized Difference Water Index, NPP: Net Primary Productivity, NPV: Non-Photosynthetic Vegetation, NR-G: Available
Energy, PAI: Plant area index, RS: Remote sensing, RVI: Ratio Vegetation Index, RWI: Ring-Width Indices, S: Shortwave radiation, SATVI: Soil
Adjusted Total Vegetation Index, SAVI: Soil Adjusted Vegetation Index, SBA: Stand Basal Area, SR: Solar radiation, SRI: Solar Radiation Index,
ST: Surface Temperature, SWI: Soil moisture Index, TCT: Tasseled Cap Transformation, TWI: Topographic Wetness Index, VH: vertical-horizontal
polarization, VV: vertical-vertical polarization, WDRVI: Wide Dynamic Range Vegetation Index, WI: Water Index.

38



BOSQUE 45(1): 17-41, 2024
Remote sensing to assess dry forests

SupplMat3. Remote sensing data source and effectiveness of ecological indicators of the 88 articles included.

Fuente de los datos de sensores remotos y efectividad de los indicadores ecologicos de los 88 articulos incluidos.

ID Remote sensing Effectiveness of ecological indicators Weak fit /
data source high cost
1 MODIS higher ANPP values with higher density and basal area of trees
2 DEM canopy characteristics coupling with landscape measures
3 Ikonos good fit of models for the LAI values
remote sensing data performance to characterize the undergrowth forest structure is
4 UAVs . o X
low compared with forest field indicators
5 Landsat land use and land cover changes
good fit for texture measures of green index and abundance of trees, shrubs, and
6 Landsat .
variance of the canopy area
7 DEM, Landsat weak fit between structure and age forest with productivity X
8 Landsat good fit for the classification of deciduous vegetation with time series
9 UAVs, Google Earth,  good fit for very high-resolution images with keystone tree species and their health
DEM across wide heterogeneous landscapes
10 AMSR-E, TMI, good fit combining optical and passive microwave indices to identify events of
MODIS disturb
11 MODIS good fit for evapotranspiration and remote sensing data
12 QuickBird, Landsat low cost for interviews about anthroplc disturb and high cost of remote sensing X
images
good fit, to predict and understand the past, between the structure and function of
13 MODIS . o
vegetation, precipitation, and fire
good fit between landscape composition and configuration changes with forest
14 Landsat . .
fragmentation over time
15 MODIS, QuickBird land use and land cover changes
the roles of forest clearing, rainfall variability, and seismic activity in the formation
16 MODIS .
of abrupt watercourse formation
17 Landsat, RapidEye, good fit between surface albedo and land cover clearing from time series
Google Earth
18 Landsat, QuickBird, good fit for spatial patterns of forest degradation with distance to the nearest forest
DEM edge or road
19 Sentinel 2, Landsat determination of precipitation-sensitive dynamic threshold to detect forest
20 WorldView 2 dendrometric traits to assess healthy and spatial planning
21 Landsat land use and land cover changes
Sentinel 1, Sentinel 2, . . .
22 Landsat, DEM good fit for AGB with stress index and green index
23 WorldView 2, good fit for dendrometric traits (wood volume) with vegetation indices from high
GeoEye-1, Landsat spatial resolution images
24 WorldView 2 good fit between forest carbon with Vegetgtlon indices derived from high spatial
resolution
WorldView 2, . . . . .
25 GeoEye-1, Landsat weak fit between sparsely distributed trees with medium-spatial-resolution sensors X
26 Landsat good fit between AGB with green indexes in the early dry season
27 MODIS, Landsat DBH and human factors control regional patterns of AGB
28 Landsat land use and land cover changes
29 Landsa;,)l(g);l/;ckblrd; good fit between height of dominant trees and productivity
30 Landsat, Lidar good fit between patch and landscape level
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31
32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52
53
54
55
56
57
58

59

60

61

MODIS
Landsat

MODIS, Google Earth
Landsat
MODIS, Google Earth

MODIS
MODIS, Landsat 5 TM

Ikonos-2, Landsat

JERS-1, ALOS
PALSAR, Quickbird,
Landsat

Google Earth, Landsat

Landsat, MODIS,
Sentinel 2

Landsat

MODIS

MODIS, Google Earth

Landsat
PASTIS-57, DHP,
MODIS

Google Earth

Landsat

Landsat, DEM

Landsat, MODIS,
DEM, Google Earth

Landsat, DEM
Landsat, DEM
Landsat, MODIS
Ikonos-2, Landsat
ALOS PALSAR
Scanner
Landsat
Landsat

ALOS PALSAR,
Landsat 7

DEM, SPOT

WorldView-2,
QuickBird, Landsat,
DEM

good fit between wetness and tree growth
good fit between microclimate and healthy forest

replacement of dry forests by crops has strong biophysical effects on the energy
budget

land use and land cover changes

human land use and resource extraction were the predominant drivers of vegetation
change

geographical variation and forest type as indicators of resistance to drought
woody vegetation regulates water dynamics and ecosystem phenology

quantification of canopy cover to delineate areas for ecological restoration and
conservation

AGB predicted by radar in forest-savanna transition areas

climate factors, anthropogenic activities, and their interactions defined
spatiotemporal variations of vegetation

good fit between NPP and vegetation degradation
simulation of future scenarios of vegetation degradation, taking account land use

patterns and coverage

patterns of CO, and water vapor fluxes and their relationships with environmental
variables

wood density, tree height, and annual carbon as predictors of aboveground
biomass, forest stability, and carbon long-term persistence.

dendrometric traits (tree diameter and DBH) to assess wood volume
indirect validation of classification with remote sensing data
the geographical distribution, and environmental and social context of forest cover/

biomass

good fit between tree cover and vegetation density, with green and moisture
indexes

long-term effects of seeding and herbivore control in local reforestation projects
phenology in response to climate changes

evaluation of forest loss
land use and land cover changes
land cover classes in response to climate change
classification object-based is efficient to select areas with a high canopy cover
good fit between AGB and DBH, tree height and basal area
response of canopy reflectance under controlled water stress
estimation of canopy growth under water stress

estimation of canopy growth under water stress, a multiscale approach
combining radar and optical to estimate forest biomass stocks

monitoring forests using tree density is better than using area

pixel-based classification is better than object-based classification
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62

63

64

65
66
67
68

69

70

71

72

73
74
75

76

77
78
79
80
81

82

83
84
85
86
87

88

MODIS
Landsat
UAVs, LiDAR

Landsat
Landsat, DEM
Landsat
DEM

SPOT, Landsat,
MODIS, AVHRR

ATSR-2, Landsat,
AVHRR, SPOT

Landsat, Worldview-2

AVHRR, SPOT,
Landsat

UAVs
Landsat
MODIS

UAVs

Hyperion EO-1
Landsat
WorldView-2
Landsat, UAVs
MODIS

Landsat, DEM,
MODIS

Sentinel 1y 2
Landsat, MODIS
Landsat, MODIS

Landsat, UAVs

Landsat

Landsat, Sentinel 1

transpiration in vegetation cover is a good indicator of water vapor flux in the
hydrological model

spectral variables as indicators of plant species diversity

forest classification and individual structural measurements are fundamental for
large-scale forest changes

land use and land cover changes
good fit between AGB and structure of forest
cover forest loss

vegetation cover in response to climate change

temporal land cover change

land cover use land cover change
good fit between logging and green index
near-real time mapping and a robust technique for cloud decontamination

image based-point cloud has a good fit with plot-scale heights of woody vegetation
object-based classification
land cover use land cover change

vertical integrity and vertical complexity (3D point cloud), canopy height model
are good indicators of degradation

hyperspectral images assessing seasonal variations of vegetation cover
high images resolution of deforestation has low uncertainty
good fit between structural forest and texture measures
remote sensing to estimate physiology of the canopy

remote sensing to estimate evapotranspiration
time series for the detection of dry forest degradation

mapping canopy cover with optical and radar sensors
data fusion of remote sensing data for phenology analysis
data fusion of remote sensing data for phenology analysis
good fit between canopy cover and high-resolution multispectral images
good fit for structure of woodlands with productivity and exotic mammals

good fit for multi-sensor models with trees biomass and abundance, and shrubs
biomass

AMSR-E: Advanced Microwave Scanning Radiometer - Earth Observing System, AVHRR: Advanced Very-High-Resolution Radiometer, DEM:
Digital Elevation Model, DHP: Digital Hemispherical Photography, LiDAR: Light Detection and Ranging, MODIS: Moderate Resolution Imaging
Spectroradiometer, RS: Remote sensing, TMI: Tropical Microwave Imager, PASTIS-57: Autonomous System from Transmittance Instantaneous
Sensors oriented at 57°, UAVs: Unmanned Aerial Vehicles, AGB: Above Ground Biomass, ANPP: Aboveground Net Primary Productivity, DBH:
Diameter at Breast Height.
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